
Learnable Cloud-Guided LLM
Quantization for Resource-Constrained

Edge Devices

Qinxiao Deng1(B), Tianfu Pang1(B), Benteng Zhang1, Bingbing Nie2,
Xiaoming He3, Yingc hi Mao1, and Jie Wu4

1 College of Computer Science and Software Engineering, Hohai University,
Nanjing, China

{241307010031,221307050007,230407040003,yingchimao}@hhu.edu.cn
2 Huaneng Lancang River Hydropower Inc., Kunming, China

3 College of Internet of Things, Nanjing Univ ersity of Posts and Telecommunications,
Nanjing, China

hexiaoming@njupt.edu.cn
4 Center for Networked Computing, Temple Univ ersity, Philadelphia, USA

jiewu@temple.edu

Abstract. Model quantization is crucial for deploying large language
models (LLMs) on resource-constrained edge devices. However, in cloud-
edge collaboration, edge devices (EDs) often lack the resources for
on-device quantization. Moreover, existing Post-Training Quantization
(PTQ) methods employ a static parameter approach, which fails to
adapt to diverse local data distributions. To address these challenges,
we propose a novel method, Learnable Quantization Guided by Dis-
tribution Correction (LQGDC), for generating an optimal, lightweight
model that can be delivered to the ED for local inference within a cloud-
edge collaborative framework. In this framework, edge devices upload
a small amount of local data to the cloud as a calibration set. The
cloud server then selects a suitable pre-trained model from a Model
Pool and applies LQGDC to quantize the model. LQGDC introduces
learnable parameters for weights, activations, and key-value (KV) cache.
LQGDC employs a composite loss function that combines Mean Squared
Error (MSE), cosine similarity, and Kullback-Leibler (KL) divergence to
fine-tune parameters, thereb y matching each device’s unique data distri-
bution. Experiments on seven datasets demonstrate that LQGDC out-
performs all three current baselines in both language generation and
zero-shot tasks. Specifically, when quantizing LLaMA-13B to W4A4KV4,
LQGDC reduces average perplexity (PPL) by 1.92 and improves zero-
shot task accuracy by 2.14% compared to the best baseline. This app-
roach shows promise for single AI task implementation on resource-
constrained EDs (e.g., complex voice command processing on smart-
phones, real-time visual defect detection on industrial drones, and doc-
ument analysis with long-term context).

Keywords: LLMs · Model quantization · Local Inference ·
Cloud-Edge Collaboration · Post-Training Quantization

c© IFIP International Federation for Information Processing 2026
Published by Springer Nature Switzerland AG 2026
X. Wang et al. (Eds.): NPC 2025, LNCS 16305, pp. 423–435, 2026.
https://doi.org/10.1007/978-3-032-10459-5_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-10459-5_33&domain=pdf
https://doi.org/10.1007/978-3-032-10459-5_33

424 Q. Deng et al.

1 Introduction

LLMs [1, 2], based on the Transformer architecture [4], are central to edge intelli-
gence but challenging to deploy on resource-constrained edge d evices (EDs) due
to their massive size (e.g., GPT-3 [5] has 175 billion parameters). It is crucial
to deploy the capabilities of LLMs to resource-constrained E Ds efficiently. This
enables real-time offline defect identification in drones [3] and complex command
execution on smartphones. Model quantization is frequently applied to facilitate
the deployment of LLMs on EDs. While model quantization can reduce com-
putational and memory requirements, EDs lack the resources to perform quan-
tization locally, and cloud servers cannot access edge data for tailored mod el
optimization. In a cloud-edge framework, a cloud server can perform complex
computation tasks such as model training and quantization and subsequently
deliver optimal models to EDs.

Quantization-Aware Training (QAT) and Post-Training Quantization (PTQ)
are applied to quantizing LLMs. QAT preserves high accuracy but at a steep
computational cost. PTQ is more practical than QAT for edge deployment due
to its lo wer computational cost, albeit often at a slight accuracy trade-off. Stud-
ies show activation value channels contain outliers [10, 11, 13], reducing model
accuracy. SmoothQuant [6] smoothes outliers via channel scaling. Wei et al. [7]
found that outliers concentrate in asymmetric channels. OS+ uses channel dis-
placement to eliminate asymmetric channel scaling effects and smooth outliers.
However, existing static-parameter transformations struggle to smooth all chan-
nels. Furthermore, deploying LLMs for long-context tasks (e.g., document analy-
sis or multi-round dialogue) on EDs is challenged by the high memory footprint
of the Key-Value (KV) cache during autoregressive decoding. Existing meth-
ods, such as KVQuant [8] and IntactKV [9], attempt to reduce this footprint
through techniques like per-channel quantization or preserving certain tokens
in full precision. However, these approaches often overlook the dynamic distri-
butions across channels and tok ens, leading to significant quantization errors,
especially for outliers in key and value activations.

To address these challenges, we propose a cloud-edge collaborative frame-
work that offloads quantization to the cloud, guided by a small amount of edge
data. We propose a novel method, the Learnable Quantization Guided by Distri-
bution Correction (LQGDC) algorithm, in this framework. Unlike conventional
methods that use static parameters, LQGDC introduces learnable parameters for
equivalence transformations on weights, activations, and the KV cache. It opti-
mizes these parameters via a composite loss function combining Mean Squared
Error (MSE), cosine similarity, and Kullback-Leibler (KL) divergence to align
quantized outputs with full-precision versions in value, direction, and attention
distribution. Within this framework, the cloud generates an optimized, low-bit
SubNet for a target ED by applying LQGDC to quantize a selected LLM.

The main contributions of this paper are as follows:
– Framework Design. We propose a novel cloud-edge collaboration frame-

work where the cloud performs complex quantization guided by a small
amount of edge data, effectively bridging the information gap between them.

Learnable Cloud-Guided LLM Quantization for Edge Devices 425

– Algorithmic Innovation. We design an algorithm, LQGDC, that uses
learnable equivalence transformations and a distribution-correction-guided
loss function. LQGDC enables dynamic adaptation to data distributions and
generates high-fidelity, personalized low-bit models.

– Effectiveness. LQGDC outperforms all baseline methods. For instance, at
W4A4KV4 precision, it reduces the average perplexity of LLaMA-2-7B by
2.88 on language tasks and boosts the accuracy of LLaMA-13B by up to
2.26% on zero-shot tasks, while also achieving a 12.50% additional memory
saving over standard 4-bit methods.

2 System Model

The system model comprises a Cloud Server and EDs. The Cloud Server
maintains a Model Pool and executes the LQGDC algorithm. EDs with finite
resources provide local calibration data and run the final optimized model locally.
The workflow of this framework is divided into the following three phases:

Phase 1: Model Selection and Data Upload. The process begins at the
EDs, which request a suitable base model (e.g., LLaMA family [12]) from the
cloud based on their specific application needs. Subsequently, the ED prepares
and uploads a small, representative calibration dataset derived from its local
data as guidance for quan tization. To protect user privacy, sensitive information
will be scrubbed from these samples locally before upload.

Phase 2: Cloud-Side Quantization and Optimization. Upon receiving
the request and data, the Cloud Server initiates the core quantization process.
First, the server loads the specified m odel, runs it once to cache the original,
full-precision output of each block, denoted as .F i

fp, and initializes all learnable
quantization parameters. The model is then quantized and optimized block-by-
block in a sequential manner, where the output of the previous quant ized block
serves as the input to the next, thereby mitigating error across layers.

1. Learnable Transformation. LQGDC applies the learnable equivalent
transformations to the weights, activations, and KV cache of the current block
to adjust their numerical ranges, preparing them for low-bit quantization.

2. Loss Calculation and Optimization. We update the parameters block by
block through minimizing a composite loss function .L = Li

F +Li
A. The quan -

tized output .F i
q, the original full-precision output .F i

fp, and the output . F i
fp∗

from the previous quantized input are used to calculate feature loss .Li
F , which

ensures consistency in value and direction and corrects a ccumulated errors.
The attention loss .Li

A is calculated by comparing the atten tion distribution
.Ai

fp and .Ai
q to restore the accuracy of the attention calculation.

Phase 3: Model Distribution and Local Inference. The optimization cycle
described above is repeated for every block in the model until all blocks have
been individually calibrated. Finally, these optimized blocks are assembled into

426 Q. Deng et al.

Fig. 1. Workflow of the framework with LQGDC Quantization

a final Quantized SubNet. After verification, this model is distributed back
to EDs. Due to its significantly smaller size, the model can be run efficiently f or
local inference, ensuring low resource consumption, offline capability, and user
data privacy (Fig. 1).

Through this workflow, our framework successfully leverages the cloud’s com-
putational power to solve the edge’s challenges, providing a practical and e ffective
solution for personalized, high-performance AI applications on the edge.

3 Methodology

LQGDC utilizes a series of learnable transformations to mitigate accuracy loss
during quantization. Our approach consists of five core modules: Learnable
Weight-Activation Smoothing (LWAS) for mitigating outliers in weights and acti-
vations, Learnable Weight-Activation Clipping (LWAC) for determining layer-
wise dynamic quantization ranges, Learnable KV Cache Transformation and
Smoothing (LKVTS) for KV cache quantization, Historical KV Quantization
(HKVQ) for efficient long-context handling, and Distribution Correction Guid-
ance (DCG) for optimizing all parameters.

3.1 Learnable Weights and Activation Value Equiv alent
Transformations

This subsection presents the LWAS and LWAC modules. Quantizing activations
in LLMs is difficult due to the presence of significant outliers. To address this,
the LWAS module introduces a learnable, per-channel smoothing factor . k, which
shifts the quantization difficulty from the activations to the weights through an
equivalence transformation, which is given by

.Y = (X · diag(k)−1)(diag(k) · W) + B = X̂ · Ŵ + B, (1)

Learnable Cloud-Guided LLM Quantization for Edge Devices 427

where the input activations .X and weigh ts .W are transformed in to .X̂ and . Ŵ ,
respectively, and .B is the bias term. This leads to more balanced numerical
ranges that are less affected by quantization errors caused by outliers by adjust-
ing the values of learnable parameters . k. Even after the smoothing process,
some residual outliers may persist in the weights and activations. The LWAC
module introduces learnable clipping thresholds .θw = {αw, βw} for weights and
.θa = {αa, βa} for activations. In weight quantization, we clip the balanced
weights .Ŵ and then map them to the target integer range .[0, 2N − 1], which
is giv en by

.Wq = clamp

([
Ŵ

sx

]
+ z, 0, 2N − 1

)
, (2)

where .[·] is the rounding operation and .clamp(·, 0, 2N − 1) clips the result to the
target integer .[0, 2N −1]. The scaling factor .sx and zero-poin t . z are dynamically
adjusted by clipping parameters .αw, βw ∈ [0, 1], which are gi ven by

.sx =
αwmax(Ŵ) − βwmin(Ŵ)

2N − 1
, z = −[

βwmin(Ŵ)
sx

], θw = {αw, βw}. (3)

The learnable clipping parameters, .{θa, θw}, are limited by the sigmoid func-
tion. Their role is to dynamically adjust the quantization range of the weights,
allowing for full adaptation to their distribution while preventing invalid outliers
from consuming the limited bit-width representation.

3.2 Learnable Scale and Offset Quantization f or KV Cache

This subsection describes the LKVTS and HKVQ modules. When deploying
LLMs on EDs for single AI tasks, there’s demand for long-text reasoning. This
necessitates the quantization of the KV cache to conserve memory usage on EDs.
Outliers present across various channels and tokens can introduce significant
errors in KV cache quantization, thereby impairing the precision of attention
computation. To mitigate the degradation in model precision caused by out-
liers within KV cache channels, the LKVTS module introduces two learnable
parameters for an equivalent transformation: a channel-wise translation param-
eter . σ and a scaling parameter . γ. These parameters independently center the
numerical distribution of each channel to achieve symmetry and scale the chan-
nel’s n umerical range, making quantization easier. This channel-wise balancing
is given by

.Ykv = {(Ykv − σ)/γ}︸ ︷︷ ︸
˜Ykv

·γ + σ, θkv = {σ, γ}. (4)

In this equivalent transformation, we utilize l earnable translation and scaling
parameters .θkv = {σ, γ} to significantly reduce the numerical disparity between
channels, making the transformed distribution .(Ykv − σ)/γ easier to quan tize.

To handle outliers in KV cache tokens, the quantization range for each token
is adjusted independently. For the channel-smoothed matrix .Ỹkv, its median .M

428 Q. Deng et al.

is used for centering, which creates a more symmetric distribution a nd reduces
outlier errors. The scaling factor .skv then maps the maximum absolute deviation
to the target bit-width . N . This dynamic token quantization process, which y ields
the quantized matrix . Ỹq, is giv en by

.

Ỹq = clamp

([
Ỹkv − M

skv

]
, 0, 2N − 1

)
,

skv =
max(|Ỹkv − M |)

2N − 1
, M = Median(Ỹkv).

(5)

This approach enhances robustness by computing the scaling factor .skv per
token, allowing adaptation to each token’s unique numerical distribution. This
reduces the difficulty of KV cache quantization.

Traditional KV cache quantization saves memory by converting all KV pairs
to low precision, but this affects attention accuracy by introducing errors when
quan tizing the most recent tokens. We propose the HKVQ module, illustrated
in Fig. 2, that resolves this issue by quantizing the historical KV cache to a
low-precision format (e.g., INT4) while maintaining the current KV pairs in full
precision (e.g., FP16). For attention computation, the dequantized historical
cache is concatenated with the full-precision current KV data. This approach
enhances robustness by computing a per-token scaling factor .skv, which adapts to
each token’s unique numerical distribution, thereby simplifying the quantization
process.

Fig. 2. Historical KV Cache S tructure Diagram

This method operates in two distinct phases. During the initial prefill phase,
all KV pairs are kept in full precision for maximum accuracy. Subsequently, in
the decoding phase, only the historical KV cache is quantized, while the newly

Learnable Cloud-Guided LLM Quantization for Edge Devices 429

generated KV pair remains at full precision and is combined with the dequan-
tized history. This approach prevents the accumulation of errors and significantly
reduces memory usage for long texts, offering an efficient and high-precision solu-
tion for LLMs on EDs. The LKVTS and HKVQ modules enable the LQGDC to
address both the numerical challenges of KV cache quantization and the memory
constraints, contributing to the model compression achieved by our method.

3.3 Distribution Correction-Guided Equivalence Transformation
Parameter U pdate

This subsection presents the DCG module. In the quantization pro cess, the opti-
mal learnable parameters, .(k, θw, θkv, θa), are determined by a unified optimiza-
tion process aimed at distribution correction. This process employs a block-wise
strategy utilizing a small amount of calibration data, with the ultimate goal
of minimizing the output discrepancy between the original and the quantized
model, which is given by

. arg min
k,θw,θa,θkv

‖WX − Qw(W ; k; θw, θkv)Qa(X; k; θa, θkv)‖, (6)

where .Q(·) represents the quantization function. The terms . Qw(W ; k; θw, θkv)
and .Qa(X; k; θa, θkv) denote the quantized values of the new weights and activa-
tions resulting from the prior equivalent transformation. This formula ascertains
the optimal parameter combination for t he model by minimizing the discrepancy
between the original and quantized outputs.

For the output of a Transformer block, it is essential to not only align the
numerical values but also to preserve the semantic direction. Therefore, we
designed a loss function composed of four terms, which is given by

.

Li
F = ‖F i

fp − F i
q‖22 − log

(
F i

q · F i
fp

‖F i
q‖‖F i

fp‖

)

+‖F i
fp ∗ −F i

q‖22 − log

(
F i

q · F i
fp∗

‖F i
q‖‖F i

fp ∗ ‖

)
,

(7)

where .F i
q is the quantized output of the .i-th Transformer block, .F i

fp is the full-
precision output of the .i-th Transformer block, .F i

fp∗ is the full-precision output
of the .i-th Transformer block derived from the quantized output of the (.i−1)-th
Transformer block, and .‖ · ‖2 is the Euclidean norm o f a vector.

The first and second terms use MSE and Cosine Similarity, respectiv ely, to
ensure the quantized output .F i

q approximates the original full-precision output
.F i

fp in both value and direction. The third and fourth terms aim to mitigate
inter-layer error accumulation. We introduce a special baseline .F i

fp∗, which rep-
resents the ideal full-precision output that the current block should produce
after receiving the quantized output from the previous block. By minimizing
the difference between .F i

fq∗ and .F i
q, we ensure the model maintains semantic

coherence across multiple stacked layers.

430 Q. Deng et al.

Moreover, to restore the attention distribution of the quantized model, an
attention relative entropy loss function is utilized to mitigate computational
errors in the attention layer arising from quantization, which is denoted as

.Li
A = DKL(Ai

q‖Ai
fp) + DKL(Ai

fp‖Ai
q), (8)

where .DKL is the KL divergence used to measure the difference b etween two
distributions, .Ai

q represents the quantized attention output in the .i-th Trans-
former block, and .Ai

fp signifies the full-precision attention output in the .i-th
Transformer block. This symmetric loss function has two terms that work in
opposite directions. The first term measures the error from the quantized dis-
tribution to the original one, while the second term measures the error in the
reverse direction. By optimizing both simultaneously, the function bidirection-
ally corrects the quantized distribution, pulling it closer to the full-precision
version for a more accurate alignment. By combining two loss functions, the
final optimization objective function is formed, which is given by

.k∗, θ∗
w, θ∗

a, θ∗
kv = min

ki,θi
w,θi

a,θi
kv

(Li
F + Li

A). (9)

The value of the loss function will approach zero infinitely when the distribu-
tion of the quantized output matches the full-precision output. Thereby, the loss
function can effectively guide the quantization process and update the learnable
equivalent transformation parameters of all blocks.

4 Performance Evaluation

4.1 Experimental Setup

Experiments were conducted on a server with an NVIDIA A100 80G GPU and
deployed on NVIDIA Jetson AGX Orin 64G and O rin NX 16G edge devices. We
evaluate model performance using Perplexity (PPL) [21] on WikiText-2 [14] and
C4 [15] datasets for language generation, and Accuracy (ACC) on five common-
sense reasoning tasks (ARC-e & ARC-c [16], HellaSwag [17], PIQA [18], Wino-
grande [19]) for zero-shot reasoning. We compare our method, LQGDC, against
three mainstream PTQ baselines: SmoothQuant [6], an INT8 method that bal-
ances activation outliers; OS+ [7], an INT4 method that uses offline c hannel-wise
shifts; and OmniQuant [20], an INT4 method that minimizes block-wise MSE.
A calibration set of 128 randomly selected 2048-tok en segments from WikiText2
is used to optimize the learnable parameters.

4.2 Comparative Analysis of P erformance

LQGDC significantly outperforms all baselines across the evaluated models, pre-
cisions, and tasks. This superior performance stems from LQGDC adapting to
data distributions, a capability that static PTQ methods lack.

Learnable Cloud-Guided LLM Quantization for Edge Devices 431

Table 1. Perplexity Comparison on Language Generation Tasks

Precision Method LLaMA-7B LLaMA-13B LLaMA-2-7B
WikiText2 C4 WikiText2 C4 WikiText2 C4

NVIDIA Jetson AGX Orin 64G
FP16 – 5.68 7.31 5.09 6.69 5.47 7.14
W6A6 SmoothQuant 6.10 7.56 5.50 7.01 6.27 7.84

OS+ 6.07 7.51 5.47 6.93 6.12 7.63
OmniQuant 6.02 7.50 5.38 6.88 5.95 7.58
LQGDC (ours) 5.93 7.38 5.35 6.80 5.76 7.35

W4A4 SmoothQuant 46.53 56.50 79.35 96.86 98.92 92.22
OS+ 40.32 47.62 53.64 71.33 60.17 68.96
OmniQuant 11.86 15.17 11.59 14.67 15.46 19.59
LQGDC (ours) 10.72 13.98 10.54 12.46 13.35 16.37

W4A4KV4 OmniQuant 12.09 15.50 11.95 15.02 15.74 19.98
LQGDC (ours) 10.79 14.10 10.59 12.54 13.42 16.55

NVIDIA Jetson Orin NX 16G
W4A4 SmoothQuant 46.58 56.51 79.37 96.91 98.96 92.22

OS+ 40.35 47.64 53.67 71.34 60.20 68.96
OmniQuant 11.88 15.20 11.60 14.69 15.48 19.64
LQGDC (ours) 10.79 14.02 10.57 12.48 13.37 16.38

W4A4KV4 OmniQuant 12.11 15.54 11.98 15.04 15.78 20.04
LQGDC (ours) 10.86 14.13 10.63 12.56 13.45 16.56

In language generation tasks (Table 1), LQGDC not only achieves optimal
language generation performance with higher bit-width quantization, but it also
performs exceptionally well in the challenging scenarios of low-bit-width quan-
tization. At W4A4 precision, where methods like SmoothQuant and OS+ suffer
catastrophic performance collapse, LQGDC excels. For instance, on the LLaMA-
13B model, LQGDC achieves a PPL of 10.54 on the diverse C4 dataset, a
substan tial improvement over the 14.67 scored by OmniQuant. This can be
attributed to our distribution correction guidance, which allows the model to
adapt to varied data distributions where other methods falter.

Moreover, this advantage is maintained even when quantization is applied
to the KV cache (W4A4KV4). The PPL of the LLaMA-2-7B model can be
reduced by an average of 2.88 for language generation tasks, outperforming the
best baseline OmniQuant quantization method. LQGDC’s specialized learnable
quantization strategy for the KV cache not only reduces memory consumption in
long-text scenarios but also effectively maintains model accuracy. Crucially, its
consistent performance on resource-constrained NVIDIA Jetson Orin NX 16G
demonstrates the feasibility of deploying LQGDC on EDs.

432 Q. Deng et al.

LQGDC’s superiority extends to complex zero-shot reasoning (Table 2). At
W4A4KV4 precision, LQGDC demonstrates exceptional performance on zero-
shot reasoning tasks. On the LLaMA-13B model, LQGDC achieves an average
accuracy of 54.67%, representing a notable 2.14% improvement over OmniQuant.
This demonstrates that LQGDC can significantly reduce the memory footprint
for long-context tasks without compromising the model’s ability to reason. This
is because LQGDC effectively reduces quantization error and improves quantized
inference precision through a process of learnable transformation and distribu-
tion correction-guided quantization. LQGDC maintains a relatively high accu-
racy for zero-shot tasks on resource-constrained NVIDIA Jetson Orin NX 16G,
where LQGDC achieves an even greater improvement of 2.26% over OmniQuant.
This demonstrates the feasibility of LQGDC for deployment on EDs.

4.3 Inference Memory and Ablation E xperiment

The substantial memory compression from our method is shown in Fig. 3, which
compares the memory consumption of our LQGDC (W4A4KV4) method against
FP16 and standard W4A4 quantization across v arying sequence lengths. As
shown by the curves in Fig. 3, while all quantization methods reduce memory
compared to FP16, our method demonstrates increasing advantages as sequence
length grows, particularly beyond 2048 tokens. The W4A4KV4 quantization is
particularly effective for long contexts; for LLaMA-13B with a sequence length
of 9012, memory usage is reduced to just 9.1 GB. This represents a 72.17%
compression compared to FP16 and a 12.50% savings over the standard W4A4
method. These memory savings, achieved with minimal performance degradation
as evidenced, validate LQGDC as a highly efficient solution for edge deployment.

An ablation study on LLaMA-13B (Table 3) evaluates the contributions of
LQGDC’s components. Results show DCG is the most critical component. The
severe performance degradation when removing DCG (. −12.93%) underscores its
role as the central coordination mechanism; without this global objective, local
parameter optimizations fail to maintain semantic coherence across layers. Addi-
tionally, removing LWAS and LKVTS leads to significant declines of 4.65% and
4.94%, confirming their importance in mitigating outliers in activations and KV
cache that consume substantial quantization bandwidth and impair information
retention. Excluding HKVQ results in a 2.71% drop, highlighting its role in bal-
ancing memory efficiency and attention accuracy during autoregressive decod-
ing. Removing the LWAC module also causes a 1.32% decline, indicating that
adaptive range adjustment helps minimize clipping error compared to standard
min-max quantization.

Learnable Cloud-Guided LLM Quantization for Edge Devices 433

Table 2. Zero-shot Task Accuracy Comparison (%)

Model Precision Method PiQA ARCe ARCc HellaSwag Winogrande Avg.
NVIDIA Jetson AGX O rin 64G

FP16 – 79.10 59.93 44.57 76.20 70.19 65.99
LLaMA-13B W6A6 SmoothQuant 77.83 56.36 42.54 75.27 68.71 64.14

OS+ 78.29 56.90 43.09 75.09 69.22 64.36
OmniQuant 78.40 57.28 42.91 75.82 68.27 64.54
LQGDC (ours) 78.02 57.75 42.91 75.36 69.22 64.65

W4A4 SmoothQuant 58.24 35.17 28.34 44.56 49.82 43.22
OS+ 63.00 40.32 30.38 53.61 51.54 47.77
OmniQuant 69.69 47.34 33.10 58.96 55.80 52.98
LQGDC (ours) 71.16 47.62 34.17 63.85 57.40 54.84

W4A4KV4 OmniQuant 69.07 47.10 32.79 58.48 55.22 52.53
LQGDC (ours) 71.09 47.31 34.04 63.62 57.31 54.67

NVIDIA Jetson Orin NX 16G
LLaMA-13B W4A4 SmoothQuant 57.54 34.40 27.37 43.62 48.89 42.36

OS+ 61.94 39.64 29.87 52.71 50.68 46.97
OmniQuant 68.78 46.73 32.67 58.19 55.08 52.29
LQGDC (ours) 70.10 46.91 33.66 62.90 56.52 54.02

W4A4KV4 OmniQuant 68.09 46.31 31.94 57.85 54.41 51.63
LQGDC (ours) 70.17 46.48 33.39 62.90 56.49 53.89

Fig. 3. Inference Memory Consumption of LQGDC at Various Text Lengths

434 Q. Deng et al.

Table 3. Ablation Study of LQGDC on LLaMA-13B

Configuration Average Accuracy (%). Δ

LQGDC 54.67 –
- LWAS 50.02 4.65
- LWAC 53.35 1.32
- LKVTS 49.73 4.94
- HKVQ 51.96 2.71
- DCG 41.74 12.93

5 Conclusion

To address challenges in quantizing models with internal outliers, adapting to
diverse data distributions on EDs, and performing on-device quantization, we
propose a quantization method called Learnable Quantization Guided by Distri-
bution Correction (LQGDC) in a cloud-edge collaboration framework. LQGDC
utilizes learnable parameters to dynamically smooth the model’s outliers, making
them easier to quantize. LQGDC employs a weight-activation smoothing factor
to migrate outliers from activations to weights and uses the clipping parame-
ters to optimize the quantization range, reducing truncation errors. For the KV
cache, LQGDC combines channel-wise smoothing with dynamic token quantiza-
tion to improve memory efficiency and attention accuracy. The entire process is
guided by a multi-objective loss function (MSE, cosine similarity, and KL diver-
gence) that updates these learnable parameters block by block. Experiments on
seven datasets demonstrate that LQGDC outperforms all three current base-
lines in both language generation and zero-shot tasks. Specifically, when quan-
tizing LLaMA-13B to W4A4KV4, LQGDC reduces average perplexity by 1.92
and improves zero-shot task accuracy by 2.14% compared to the best baseline.
These improvements indicate that LQGDC is a promising approach for signifi-
cantly enhancing the performance of quantized models while reducing on-device
computational resource requirements.

Acknowledgment. This work was supported in part by the Key Research and Devel-
opment Program of China under Grant 2022YFC3005401; in part by the Technology
Talent and Platform Program of Yunnan Province under Grant 202405AK340002; in
part by the Technology Project of Huaneng Group under Grant HNKJ20-H46 and
Grant HNKJ24H167; and in part by the High Performance Computing Platform, Hohai
University.

Learnable Cloud-Guided LLM Quantization for Edge Devices 435

References

1. Zhang, S., Roller, S., Goyal, N., et al.: OPT: Open Pre-trained T ransformer Lan-
guage Models. arXiv preprint arXiv:2205.01068 (2022)

2. Le Scao, T., Fan, A., Akiki, C., et al.: BLOOM: A 176B-Parameter Op en-Access
Multilingual Language Model. arXiv preprint arXiv:2211.05100 (2022)

3. Abas, K., Obraczka, K., Miller, L.: Solar-powered, wireless smart camera network:
an IoT solution f or outdoor video monitoring. Comput. Commun. 118, 217–233
(2018)

4. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, vol. 30 (2017)

5. Brown, T., Mann, B., Ryder, N., et al.: Language models are few-shot learners. In:
Adva nces in Neural Information Processing Systems, vol. 33, pp. 1877–1901 (2020)

6. Xiao, G., Lin, J., Seznec, M., et al.: Smoothquant: accurate and efficient post-
training quan tization for large language models. In: PMLR, pp. 38087–38099 (2023)

7. Wei, X., Zhang, Y., Li, Y., et al.: Outlier suppression+: accurate quantization of
large language models by equivalent and effective shifting and scaling. In: Empirical
Methods in Natural Language Processing, pp. 1648–1665 (2023)

8. Hooper, C., Kim, S., et al.: KVQuant: towards 10 million context length LLM infer-
ence with KV cache quantization. In: A dvances in Neural Information Processing
Systems, vol. 37, pp. 1270–1303 (2024)

9. Liu, R., et al.: IntactKV: improving large language model quantization by keeping
pivot tokens intact. In: ACL, pp. 7716–7741 (2024)

10. Luo, Z., Kulmizev, A., Mao, X.: Positional artefacts propagate through masked
language model e mbeddings. In: ACL-IJCNLP, vol. 1, pp. 5312–5327 (2021)

11. Bondarenko, Y., Nagel, M., Blankevoort, T.: Understanding and overcoming the
challenges of e fficient transformer quantization. In: EMNLP, pp. 7947–7969 (2021)

12. Touvron, H., et al.: Llama: open and efficient foundation language models. arXiv
preprint arXiv:2302.13971 (2023)

13. Dettmers, T., Lewis, M., Belkada, Y., Zettlemoyer, L.: LLM.int8(): 8-bit matrix
mu ltiplication for transformers at scale. arXiv preprint arXiv:2208.07339 (2022)

14. Merity, S., Xiong, C., Bradbury, J., Socher, R.: Pointer sentinel mixture models.
In: ICLR (2017)

15. Colin, R., et al.: Exploring the limits of transfer learning with a unified text-to-text
transformer. Mach. Learn. Res. 21 (2020)

16. Clark, P., et al.: Think you have Solved Question Answering? Try ARC, the AI2
Reasoning Challenge. arXiv preprint arXiv:1803.05457 (2018)

17. Zellers, R., Holtzman, A., Bisk, Y., et al.: HellaSwag: can a machine really finish
your sentence? In: ACL, pp. 4791–4800 (2020)

18. Bisk, Y., Zellers, R., Le Bras, R., et al.: PIQA: reasoning about physical c ommon-
sense in natural language. In: AAAI, pp. 7432–7439 (2020)

19. Sakaguchi, K., et al.: WinoGrande: an adversarial winograd schema c hallenge at
scale. In: AAAI, pp. 8732–8740 (2020)

20. Shao, W., Chen, M., Zhang, Z., et al.: OmniQuant: omnidirectionally calibrated
quan tization for large language models. In: ICLR (2024)

21. Li, S., Ning, X., Wang, L., et al.: Evaluating Quantized Large Language Models.
arXiv preprint arXiv:2402.18158 (2024)

http://arxiv.org/abs/2205.01068
http://arxiv.org/abs/2211.05100
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2208.07339
http://arxiv.org/abs/1803.05457
http://arxiv.org/abs/2402.18158

	Learnable Cloud-Guided LLM Quantization for Resource-Constrained Edge Devices
	1 Introduction
	2 System Model
	3 Methodology
	3.1 Learnable Weights and Activation Value Equivalent Transformations
	3.2 Learnable Scale and Offset Quantization for KV Cache
	3.3 Distribution Correction-Guided Equivalence Transformation Parameter Update

	4 Performance Evaluation
	4.1 Experimental Setup
	4.2 Comparative Analysis of Performance
	4.3 Inference Memory and Ablation Experiment

	5 Conclusion
	References

