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Abstract. Model quantization is crucial for deploying large language 
models (LLMs) on resource-constrained edge devices. However, in cloud-
edge collaboration, edge devices (EDs) often lack the resources for 
on-device quantization. Moreover, existing Post-Training Quantization 
(PTQ) methods employ a static parameter approach, which fails to 
adapt to diverse local data distributions. To address these challenges, 
we propose a novel method, Learnable Quantization Guided by Dis-
tribution Correction (LQGDC), for generating an optimal, lightweight 
model that can be delivered to the ED for local inference within a cloud-
edge collaborative framework. In this framework, edge devices upload 
a small amount of local data to the cloud as a calibration set. The 
cloud server then selects a suitable pre-trained model from a Model 
Pool and applies LQGDC to quantize the model. LQGDC introduces 
learnable parameters for weights, activations, and key-value (KV) cache. 
LQGDC employs a composite loss function that combines Mean Squared 
Error (MSE), cosine similarity, and Kullback-Leibler (KL) divergence to 
fine-tune parameters, thereb y matching each device’s unique data distri-
bution. Experiments on seven datasets demonstrate that LQGDC out-
performs all three current baselines in both language generation and
zero-shot tasks. Specifically, when quantizing LLaMA-13B to W4A4KV4,
LQGDC reduces average perplexity (PPL) by 1.92 and improves zero-
shot task accuracy by 2.14% compared to the best baseline. This app-
roach shows promise for single AI task implementation on resource-
constrained EDs (e.g., complex voice command processing on smart-
phones, real-time visual defect detection on industrial drones, and doc-
ument analysis with long-term context).
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1 Introduction 

LLMs [ 1, 2], based on the Transformer architecture [4], are central to edge intelli-
gence but challenging to deploy on resource-constrained edge d evices (EDs) due
to their massive size (e.g., GPT-3 [5] has 175 billion parameters). It is crucial 
to deploy the capabilities of LLMs to resource-constrained E Ds efficiently. This
enables real-time offline defect identification in drones [3] and complex command 
execution on smartphones. Model quantization is frequently applied to facilitate 
the deployment of LLMs on EDs. While model quantization can reduce com-
putational and memory requirements, EDs lack the resources to perform quan-
tization locally, and cloud servers cannot access edge data for tailored mod el
optimization. In a cloud-edge framework, a cloud server can perform complex
computation tasks such as model training and quantization and subsequently
deliver optimal models to EDs.

Quantization-Aware Training (QAT) and Post-Training Quantization (PTQ) 
are applied to quantizing LLMs. QAT preserves high accuracy but at a steep 
computational cost. PTQ is more practical than QAT for edge deployment due 
to its lo wer computational cost, albeit often at a slight accuracy trade-off. Stud-
ies show activation value channels contain outliers [10, 11, 13], reducing model 
accuracy. SmoothQuant [6] smoothes outliers via channel scaling. Wei et al. [7] 
found that outliers concentrate in asymmetric channels. OS+ uses channel dis-
placement to eliminate asymmetric channel scaling effects and smooth outliers. 
However, existing static-parameter transformations struggle to smooth all chan-
nels. Furthermore, deploying LLMs for long-context tasks (e.g., document analy-
sis or multi-round dialogue) on EDs is challenged by the high memory footprint
of the Key-Value (KV) cache during autoregressive decoding. Existing meth-
ods, such as KVQuant [8] and IntactKV [9], attempt to reduce this footprint 
through techniques like per-channel quantization or preserving certain tokens 
in full precision. However, these approaches often overlook the dynamic distri-
butions across channels and tok ens, leading to significant quantization errors,
especially for outliers in key and value activations.

To address these challenges, we propose a cloud-edge collaborative frame-
work that offloads quantization to the cloud, guided by a small amount of edge 
data. We propose a novel method, the Learnable Quantization Guided by Distri-
bution Correction (LQGDC) algorithm, in this framework. Unlike conventional 
methods that use static parameters, LQGDC introduces learnable parameters for 
equivalence transformations on weights, activations, and the KV cache. It opti-
mizes these parameters via a composite loss function combining Mean Squared 
Error (MSE), cosine similarity, and Kullback-Leibler (KL) divergence to align
quantized outputs with full-precision versions in value, direction, and attention
distribution. Within this framework, the cloud generates an optimized, low-bit
SubNet for a target ED by applying LQGDC to quantize a selected LLM.

The main contributions of this paper are as follows:
– Framework Design. We propose a novel cloud-edge collaboration frame-

work where the cloud performs complex quantization guided by a small 
amount of edge data, effectively bridging the information gap between them.
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– Algorithmic Innovation. We design an algorithm, LQGDC, that uses 
learnable equivalence transformations and a distribution-correction-guided 
loss function. LQGDC enables dynamic adaptation to data distributions and
generates high-fidelity, personalized low-bit models.

– Effectiveness. LQGDC outperforms all baseline methods. For instance, at 
W4A4KV4 precision, it reduces the average perplexity of LLaMA-2-7B by 
2.88 on language tasks and boosts the accuracy of LLaMA-13B by up to
2.26% on zero-shot tasks, while also achieving a 12.50% additional memory
saving over standard 4-bit methods.

2 System  Model  

The system model comprises a Cloud Server and EDs. The Cloud Server 
maintains a Model Pool and executes the LQGDC algorithm. EDs with finite 
resources provide local calibration data and run the final optimized model locally.
The workflow of this framework is divided into the following three phases:

Phase 1: Model Selection and Data Upload. The process begins at the 
EDs, which request a suitable base model (e.g., LLaMA family [12]) from the 
cloud based on their specific application needs. Subsequently, the ED prepares 
and uploads a small, representative calibration dataset derived from its local 
data as guidance for quan tization. To protect user privacy, sensitive information
will be scrubbed from these samples locally before upload.

Phase 2: Cloud-Side Quantization and Optimization. Upon receiving 
the request and data, the Cloud Server initiates the core quantization process. 
First, the server loads the specified m odel, runs it once to cache the original,
full-precision output of each block, denoted as .F i

fp, and initializes all learnable 
quantization parameters. The model is then quantized and optimized block-by-
block in a sequential manner, where the output of the previous quant ized block
serves as the input to the next, thereby mitigating error across layers.

1. Learnable Transformation. LQGDC applies the learnable equivalent 
transformations to the weights, activations, and KV cache of the current block 
to adjust their numerical ranges, preparing them for low-bit quantization.

2. Loss Calculation and Optimization. We update the parameters block by 
block through minimizing a composite loss function .L = Li

F +Li
A.  The  quan  -

tized output .F i
q, the original full-precision output .F i

fp, and the output . F i
fp∗

from the previous quantized input are used to calculate feature loss .Li
F ,  which  

ensures consistency in value and direction and corrects a ccumulated errors.
The attention loss .Li

A is calculated by comparing the atten tion distribution
.Ai

fp and .Ai
q to restore the accuracy of the attention calculation.

Phase 3: Model Distribution and Local Inference. The optimization cycle 
described above is repeated for every block in the model until all blocks have
been individually calibrated. Finally, these optimized blocks are assembled into
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Fig. 1. Workflow of the framework with LQGDC Quantization

a final Quantized SubNet. After verification, this model is distributed back 
to EDs. Due to its significantly smaller size, the model can be run efficiently f or
local inference, ensuring low resource consumption, offline capability, and user
data privacy (Fig. 1). 

Through this workflow, our framework successfully leverages the cloud’s com-
putational power to solve the edge’s challenges, providing a practical and e ffective
solution for personalized, high-performance AI applications on the edge.

3 Methodology 

LQGDC utilizes a series of learnable transformations to mitigate accuracy loss 
during quantization. Our approach consists of five core modules: Learnable 
Weight-Activation Smoothing (LWAS) for mitigating outliers in weights and acti-
vations, Learnable Weight-Activation Clipping (LWAC) for determining layer-
wise dynamic quantization ranges, Learnable KV Cache Transformation and 
Smoothing (LKVTS) for KV cache quantization, Historical KV Quantization
(HKVQ) for efficient long-context handling, and Distribution Correction Guid-
ance (DCG) for optimizing all parameters.

3.1 Learnable Weights and Activation Value Equiv alent
Transformations

This subsection presents the LWAS and LWAC modules. Quantizing activations 
in LLMs is difficult due to the presence of significant outliers. To address this, 
the LWAS module introduces a learnable, per-channel smoothing factor . k,  which  
shifts the quantization difficulty from the activations to the weights through an 
equivalence transformation, which is given by

.Y = (X · diag(k)−1)(diag(k) · W ) + B = X̂ · Ŵ + B, (1)
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where the input activations .X and weigh ts .W are transformed in to .X̂ and . Ŵ , 
respectively, and .B is the bias term. This leads to more balanced numerical 
ranges that are less affected by quantization errors caused by outliers by adjust-
ing the values of learnable parameters . k. Even after the smoothing process, 
some residual outliers may persist in the weights and activations. The LWAC
module introduces learnable clipping thresholds .θw = {αw, βw} for weights and
.θa = {αa, βa} for activations. In weight quantization, we clip the balanced
weights .Ŵ and then map them to the target integer range .[0, 2N − 1],  which  
is giv en by

.Wq = clamp

([
Ŵ

sx

]
+ z, 0, 2N − 1

)
, (2) 

where .[·] is the rounding operation and .clamp(·, 0, 2N − 1) clips the result to the 
target integer .[0, 2N −1]. The scaling factor .sx and zero-poin t . z are dynamically 
adjusted by clipping parameters .αw, βw ∈ [0, 1],  which  are  gi  ven by

.sx =
αwmax(Ŵ ) − βwmin(Ŵ )

2N − 1
, z = −[

βwmin(Ŵ )
sx

], θw = {αw, βw}. (3) 

The learnable clipping parameters, .{θa, θw}, are limited by the sigmoid func-
tion. Their role is to dynamically adjust the quantization range of the weights, 
allowing for full adaptation to their distribution while preventing invalid outliers
from consuming the limited bit-width representation.

3.2 Learnable Scale and Offset Quantization f or KV Cache

This subsection describes the LKVTS and HKVQ modules. When deploying 
LLMs on EDs for single AI tasks, there’s demand for long-text reasoning. This 
necessitates the quantization of the KV cache to conserve memory usage on EDs. 
Outliers present across various channels and tokens can introduce significant 
errors in KV cache quantization, thereby impairing the precision of attention 
computation. To mitigate the degradation in model precision caused by out-
liers within KV cache channels, the LKVTS module introduces two learnable
parameters for an equivalent transformation: a channel-wise translation param-
eter . σ and a scaling parameter . γ. These parameters independently center the 
numerical distribution of each channel to achieve symmetry and scale the chan-
nel’s n umerical range, making quantization easier. This channel-wise balancing
is given by

.Ykv = {(Ykv − σ)/γ}︸ ︷︷ ︸
˜Ykv

·γ + σ, θkv = {σ, γ}. (4) 

In this equivalent transformation, we utilize l earnable translation and scaling
parameters .θkv = {σ, γ} to significantly reduce the numerical disparity between 
channels, making the transformed distribution .(Ykv − σ)/γ easier to quan tize.

To handle outliers in KV cache tokens, the quantization range for each token 
is adjusted independently. For the channel-smoothed matrix .Ỹkv, its median .M
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is used for centering, which creates a more symmetric distribution a nd reduces
outlier errors. The scaling factor .skv then maps the maximum absolute deviation 
to the target bit-width . N . This dynamic token quantization process, which y ields
the quantized matrix . Ỹq,  is  giv  en by

.

Ỹq = clamp

([
Ỹkv − M

skv

]
, 0, 2N − 1

)
,

skv =
max(|Ỹkv − M |)

2N − 1
, M = Median(Ỹkv).

(5) 

This approach enhances robustness by computing the scaling factor .skv per 
token, allowing adaptation to each token’s unique numerical distribution. This 
reduces the difficulty of KV cache quantization.

Traditional KV cache quantization saves memory by converting all KV pairs 
to low precision, but this affects attention accuracy by introducing errors when 
quan tizing the most recent tokens. We propose the HKVQ module, illustrated
in Fig. 2, that resolves this issue by quantizing the historical KV cache to a 
low-precision format (e.g., INT4) while maintaining the current KV pairs in full 
precision (e.g., FP16). For attention computation, the dequantized historical 
cache is concatenated with the full-precision current KV data. This approach
enhances robustness by computing a per-token scaling factor .skv, which adapts to 
each token’s unique numerical distribution, thereby simplifying the quantization
process.

Fig. 2. Historical KV Cache S tructure Diagram

This method operates in two distinct phases. During the initial prefill phase, 
all KV pairs are kept in full precision for maximum accuracy. Subsequently, in 
the decoding phase, only the historical KV cache is quantized, while the newly
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generated KV pair remains at full precision and is combined with the dequan-
tized history. This approach prevents the accumulation of errors and significantly 
reduces memory usage for long texts, offering an efficient and high-precision solu-
tion for LLMs on EDs. The LKVTS and HKVQ modules enable the LQGDC to
address both the numerical challenges of KV cache quantization and the memory
constraints, contributing to the model compression achieved by our method.

3.3 Distribution Correction-Guided Equivalence Transformation 
Parameter U pdate

This subsection presents the DCG module. In the quantization pro cess, the opti-
mal learnable parameters, .(k, θw, θkv, θa), are determined by a unified optimiza-
tion process aimed at distribution correction. This process employs a block-wise 
strategy utilizing a small amount of calibration data, with the ultimate goal 
of minimizing the output discrepancy between the original and the quantized
model, which is given by

. arg min
k,θw,θa,θkv

‖WX − Qw(W ; k; θw, θkv)Qa(X; k; θa, θkv)‖, (6) 

where .Q(·) represents the quantization function. The terms . Qw(W ; k; θw, θkv)
and .Qa(X; k; θa, θkv) denote the quantized values of the new weights and activa-
tions resulting from the prior equivalent transformation. This formula ascertains 
the optimal parameter combination for t he model by minimizing the discrepancy
between the original and quantized outputs.

For the output of a Transformer block, it is essential to not only align the 
numerical values but also to preserve the semantic direction. Therefore, we
designed a loss function composed of four terms, which is given by

.

Li
F = ‖F i

fp − F i
q‖22 − log

(
F i

q · F i
fp

‖F i
q‖‖F i

fp‖

)

+‖F i
fp ∗ −F i

q‖22 − log

(
F i

q · F i
fp∗

‖F i
q‖‖F i

fp ∗ ‖

)
,

(7) 

where .F i
q is the quantized output of the .i-th Transformer block, .F i

fp is the full-
precision output of the .i-th Transformer block, .F i

fp∗ is the full-precision output 
of the .i-th Transformer block derived from the quantized output of the (.i−1)-th 
Transformer block, and .‖ · ‖2 is the Euclidean norm o f a vector.

The first and second terms use MSE and Cosine Similarity, respectiv ely, to
ensure the quantized output .F i

q approximates the original full-precision output
.F i

fp in both value and direction. The third and fourth terms aim to mitigate 
inter-layer error accumulation. We introduce a special baseline .F i

fp∗, which rep-
resents the ideal full-precision output that the current block should produce 
after receiving the quantized output from the previous block. By minimizing
the difference between .F i

fq∗ and .F i
q, we ensure the model maintains semantic 

coherence across multiple stacked layers.
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Moreover, to restore the attention distribution of the quantized model, an 
attention relative entropy loss function is utilized to mitigate computational 
errors in the attention layer arising from quantization, which is denoted as

.Li
A = DKL(Ai

q‖Ai
fp) + DKL(Ai

fp‖Ai
q), (8) 

where .DKL is the KL divergence used to measure the difference b etween two
distributions, .Ai

q represents the quantized attention output in the .i-th Trans-
former block, and .Ai

fp signifies the full-precision attention output in the .i-th 
Transformer block. This symmetric loss function has two terms that work in 
opposite directions. The first term measures the error from the quantized dis-
tribution to the original one, while the second term measures the error in the 
reverse direction. By optimizing both simultaneously, the function bidirection-
ally corrects the quantized distribution, pulling it closer to the full-precision
version for a more accurate alignment. By combining two loss functions, the
final optimization objective function is formed, which is given by

.k∗, θ∗
w, θ∗

a, θ∗
kv = min

ki,θi
w,θi

a,θi
kv

(Li
F + Li

A). (9) 

The value of the loss function will approach zero infinitely when the distribu-
tion of the quantized output matches the full-precision output. Thereby, the loss 
function can effectively guide the quantization process and update the learnable
equivalent transformation parameters of all blocks.

4 Performance Evaluation 

4.1 Experimental Setup 

Experiments were conducted on a server with an NVIDIA A100 80G GPU and 
deployed on NVIDIA Jetson AGX Orin 64G and O rin NX 16G edge devices. We
evaluate model performance using Perplexity (PPL) [21] on WikiText-2 [14]  and  
C4 [15] datasets for language generation, and Accuracy (ACC) on five common-
sense reasoning tasks (ARC-e & ARC-c [16], HellaSwag [17], PIQA [18], Wino-
grande [19]) for zero-shot reasoning. We compare our method, LQGDC, against 
three mainstream PTQ baselines: SmoothQuant [6], an INT8 method that bal-
ances activation outliers; OS+ [7], an INT4 method that uses offline c hannel-wise
shifts; and OmniQuant [20], an INT4 method that minimizes block-wise MSE. 
A calibration set of 128 randomly selected 2048-tok en segments from WikiText2
is used to optimize the learnable parameters.

4.2 Comparative Analysis of P erformance

LQGDC significantly outperforms all baselines across the evaluated models, pre-
cisions, and tasks. This superior performance stems from LQGDC adapting to
data distributions, a capability that static PTQ methods lack.
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Table 1. Perplexity Comparison on Language Generation Tasks

Precision Method LLaMA-7B LLaMA-13B LLaMA-2-7B 
WikiText2 C4 WikiText2 C4 WikiText2 C4 

NVIDIA Jetson AGX Orin 64G
FP16 – 5.68 7.31 5.09 6.69 5.47 7.14 
W6A6 SmoothQuant 6.10 7.56 5.50 7.01 6.27 7.84 

OS+ 6.07 7.51 5.47 6.93 6.12 7.63 
OmniQuant 6.02 7.50 5.38 6.88 5.95 7.58 
LQGDC (ours) 5.93 7.38 5.35 6.80 5.76 7.35 

W4A4 SmoothQuant 46.53 56.50 79.35 96.86 98.92 92.22 
OS+ 40.32 47.62 53.64 71.33 60.17 68.96 
OmniQuant 11.86 15.17 11.59 14.67 15.46 19.59 
LQGDC (ours) 10.72 13.98 10.54 12.46 13.35 16.37 

W4A4KV4 OmniQuant 12.09 15.50 11.95 15.02 15.74 19.98 
LQGDC (ours) 10.79 14.10 10.59 12.54 13.42 16.55 

NVIDIA Jetson Orin NX 16G
W4A4 SmoothQuant 46.58 56.51 79.37 96.91 98.96 92.22 

OS+ 40.35 47.64 53.67 71.34 60.20 68.96 
OmniQuant 11.88 15.20 11.60 14.69 15.48 19.64 
LQGDC (ours) 10.79 14.02 10.57 12.48 13.37 16.38 

W4A4KV4 OmniQuant 12.11 15.54 11.98 15.04 15.78 20.04 
LQGDC (ours) 10.86 14.13 10.63 12.56 13.45 16.56 

In language generation tasks (Table 1), LQGDC not only achieves optimal 
language generation performance with higher bit-width quantization, but it also 
performs exceptionally well in the challenging scenarios of low-bit-width quan-
tization. At W4A4 precision, where methods like SmoothQuant and OS+ suffer 
catastrophic performance collapse, LQGDC excels. For instance, on the LLaMA-
13B model, LQGDC achieves a PPL of 10.54 on the diverse C4 dataset, a 
substan tial improvement over the 14.67 scored by OmniQuant. This can be
attributed to our distribution correction guidance, which allows the model to
adapt to varied data distributions where other methods falter.

Moreover, this advantage is maintained even when quantization is applied 
to the KV cache (W4A4KV4). The PPL of the LLaMA-2-7B model can be 
reduced by an average of 2.88 for language generation tasks, outperforming the 
best baseline OmniQuant quantization method. LQGDC’s specialized learnable 
quantization strategy for the KV cache not only reduces memory consumption in
long-text scenarios but also effectively maintains model accuracy. Crucially, its
consistent performance on resource-constrained NVIDIA Jetson Orin NX 16G
demonstrates the feasibility of deploying LQGDC on EDs.
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LQGDC’s superiority extends to complex zero-shot reasoning (Table 2). At 
W4A4KV4 precision, LQGDC demonstrates exceptional performance on zero-
shot reasoning tasks. On the LLaMA-13B model, LQGDC achieves an average 
accuracy of 54.67%, representing a notable 2.14% improvement over OmniQuant. 
This demonstrates that LQGDC can significantly reduce the memory footprint 
for long-context tasks without compromising the model’s ability to reason. This 
is because LQGDC effectively reduces quantization error and improves quantized 
inference precision through a process of learnable transformation and distribu-
tion correction-guided quantization. LQGDC maintains a relatively high accu-
racy for zero-shot tasks on resource-constrained NVIDIA Jetson Orin NX 16G,
where LQGDC achieves an even greater improvement of 2.26% over OmniQuant.
This demonstrates the feasibility of LQGDC for deployment on EDs.

4.3 Inference Memory and Ablation E xperiment

The substantial memory compression from our method is shown in Fig. 3,  which  
compares the memory consumption of our LQGDC (W4A4KV4) method against 
FP16 and standard W4A4 quantization across v arying sequence lengths. As
shown by the curves in Fig. 3, while all quantization methods reduce memory 
compared to FP16, our method demonstrates increasing advantages as sequence 
length grows, particularly beyond 2048 tokens. The W4A4KV4 quantization is 
particularly effective for long contexts; for LLaMA-13B with a sequence length 
of 9012, memory usage is reduced to just 9.1 GB. This represents a 72.17% 
compression compared to FP16 and a 12.50% savings over the standard W4A4
method. These memory savings, achieved with minimal performance degradation
as evidenced, validate LQGDC as a highly efficient solution for edge deployment.

An ablation study on LLaMA-13B (Table 3) evaluates the contributions of 
LQGDC’s components. Results show DCG is the most critical component. The
severe performance degradation when removing DCG (. −12.93%) underscores its 
role as the central coordination mechanism; without this global objective, local 
parameter optimizations fail to maintain semantic coherence across layers. Addi-
tionally, removing LWAS and LKVTS leads to significant declines of 4.65% and 
4.94%, confirming their importance in mitigating outliers in activations and KV 
cache that consume substantial quantization bandwidth and impair information 
retention. Excluding HKVQ results in a 2.71% drop, highlighting its role in bal-
ancing memory efficiency and attention accuracy during autoregressive decod-
ing. Removing the LWAC module also causes a 1.32% decline, indicating that
adaptive range adjustment helps minimize clipping error compared to standard
min-max quantization.
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Table 2. Zero-shot Task Accuracy Comparison (%)

Model Precision Method PiQA ARCe ARCc HellaSwag Winogrande Avg. 
NVIDIA Jetson AGX O rin 64G

FP16 – 79.10 59.93 44.57 76.20 70.19 65.99 
LLaMA-13B W6A6 SmoothQuant 77.83 56.36 42.54 75.27 68.71 64.14 

OS+ 78.29 56.90 43.09 75.09 69.22 64.36 
OmniQuant 78.40 57.28 42.91 75.82 68.27 64.54 
LQGDC (ours) 78.02 57.75 42.91 75.36 69.22 64.65 

W4A4 SmoothQuant 58.24 35.17 28.34 44.56 49.82 43.22 
OS+ 63.00 40.32 30.38 53.61 51.54 47.77 
OmniQuant 69.69 47.34 33.10 58.96 55.80 52.98 
LQGDC (ours) 71.16 47.62 34.17 63.85 57.40 54.84 

W4A4KV4 OmniQuant 69.07 47.10 32.79 58.48 55.22 52.53 
LQGDC (ours) 71.09 47.31 34.04 63.62 57.31 54.67 

NVIDIA Jetson Orin NX 16G
LLaMA-13B W4A4 SmoothQuant 57.54 34.40 27.37 43.62 48.89 42.36 

OS+ 61.94 39.64 29.87 52.71 50.68 46.97 
OmniQuant 68.78 46.73 32.67 58.19 55.08 52.29 
LQGDC (ours) 70.10 46.91 33.66 62.90 56.52 54.02 

W4A4KV4 OmniQuant 68.09 46.31 31.94 57.85 54.41 51.63 
LQGDC (ours) 70.17 46.48 33.39 62.90 56.49 53.89 

Fig. 3. Inference Memory Consumption of LQGDC at Various Text Lengths
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Table 3. Ablation Study of LQGDC on LLaMA-13B

Configuration Average Accuracy (%). Δ

LQGDC 54.67 –
- LWAS 50.02 4.65
- LWAC 53.35 1.32
- LKVTS 49.73 4.94
- HKVQ 51.96 2.71
- DCG 41.74 12.93 

5 Conclusion 

To address challenges in quantizing models with internal outliers, adapting to 
diverse data distributions on EDs, and performing on-device quantization, we 
propose a quantization method called Learnable Quantization Guided by Distri-
bution Correction (LQGDC) in a cloud-edge collaboration framework. LQGDC 
utilizes learnable parameters to dynamically smooth the model’s outliers, making 
them easier to quantize. LQGDC employs a weight-activation smoothing factor 
to migrate outliers from activations to weights and uses the clipping parame-
ters to optimize the quantization range, reducing truncation errors. For the KV 
cache, LQGDC combines channel-wise smoothing with dynamic token quantiza-
tion to improve memory efficiency and attention accuracy. The entire process is 
guided by a multi-objective loss function (MSE, cosine similarity, and KL diver-
gence) that updates these learnable parameters block by block. Experiments on 
seven datasets demonstrate that LQGDC outperforms all three current base-
lines in both language generation and zero-shot tasks. Specifically, when quan-
tizing LLaMA-13B to W4A4KV4, LQGDC reduces average perplexity by 1.92 
and improves zero-shot task accuracy by 2.14% compared to the best baseline. 
These improvements indicate that LQGDC is a promising approach for signifi-
cantly enhancing the performance of quantized models while reducing on-device
computational resource requirements.
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